Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 335: 122107, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38616081

ABSTRACT

In this study, the polyvinylpyrrolidone-alizarin nanoparticles (PVP-AZ NPs) with favorable water dispersion and the carbon quantum dots (RQDs) with aggregate induced emission effect were synthesized to construct an eco-friendly film for food freshness monitoring. The introduction of PVP-AZ NPs and RQDs enhanced the network structure and thermal stability of the cassava starch/polyvinyl alcohol film, and reduced its crystallinity and light transmittance via non-covalent binding with the film-forming matrix. The developed film exhibited visually recognizable colorimetric and fluorescent responses to ammonia at 0.025-25 mg/mL, and it can be reused at least 6 times. Practical application experiment proved that the film, as an indicator label, can achieve accurate, real-time, and visual dynamic monitoring of the freshness of shrimp stored at 25 °C, 4 °C, and - 20 °C under daylight (orange yellow to purple) and UV light (red to blue). The integration of multivariate detection technology can eliminate the interference of external factors by self-correction to improve sensitivity and reliability, which provides a reference for the development of other food quality and safety monitoring platforms.


Subject(s)
Anthraquinones , Manihot , Animals , Polyvinyl Alcohol , Reproducibility of Results , Seafood , Crustacea , Povidone , Starch
2.
Carbohydr Polym ; 332: 121919, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431397

ABSTRACT

The differences in the gelling properties of soy protein isolate (SPI) and soy protein isolate amyloid fibrils (SAFs) as well as the role of cellulose nanocrystals (CNC) in regulating their gel behaviors were investigated in this study. The binding of CNC to ß-conglycinin (7S), glycinin (11S), and SAFs was predominantly driven by non-covalent interactions. CNC addition reduced the particle size, turbidity, subunit segments, and crystallinity of SPI and SAFs, promoted the conversion of α-helix to ß-sheet, improved the thermal stability, exposed more tyrosine and tryptophan residues, and enhanced the intermolecular interactions. A more regular and ordered lamellar network structure was formed in the SAFs-CNC composite gel, which could be conducive to the improvement of gel quality. This study would provide theoretical reference for the understanding of the regulatory mechanism of protein amyloid fibrils gelation as well as the high-value utilization of SAFs-CNC complex as a functional protein-based material or food ingredient in food field.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Soybean Proteins/chemistry , Amyloid/chemistry , Particle Size
3.
Food Chem ; 447: 138975, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38489882

ABSTRACT

Here, the influence and potential mechanism by which cellulose nanocrystals (CNC) collaborated with Ca2+ enhancing the heat-induced gelation of pea protein isolate (PPI) were investigated. It was found that the combination of 0.45% CNC and 15 mM Ca2+ synergistically increased the gel strength (from 14.18 to 65.42 g) and viscoelasticity of PPI while decreased the water holding capacity. The improved particle size, turbidity, and thermostability as well as the reduced solubility, crystallinity, and gel porosity were observed in CNC/CaCl2 composite system. CNC fragments bind to specific amino acids in 11S legumin and 7S vicilin mainly through hydrogen bonding and van der Waals forces. Moreover, changes in the protein secondary structure and enhancement of the molecular interaction induced by CNC and Ca2+ could favor the robust gel network. The results will provide a new perspective on the functional regulation of pea protein and the creation of pea protein gel-based food.


Subject(s)
Nanoparticles , Pea Proteins , Cellulose/chemistry , Calcium , Gels/chemistry , Water/chemistry , Nanoparticles/chemistry
4.
Food Chem ; 447: 138992, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38503066

ABSTRACT

The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of ß-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.


Subject(s)
Peptide Hydrolases , Triticum , Peptide Hydrolases/metabolism , Triticum/chemistry , Molecular Docking Simulation , Glutens/chemistry , Amino Acids/metabolism
5.
Biosens Bioelectron ; 254: 116205, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38484411

ABSTRACT

In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the ß-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 µM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.


Subject(s)
Biosensing Techniques , Quantum Dots , Animals , Fluoroquinolones , Terbium/chemistry , Carbon/chemistry , Polymers/chemistry , Reproducibility of Results , Quantum Dots/chemistry , Fluorescent Dyes/chemistry
6.
Int J Biol Macromol ; 263(Pt 2): 130331, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403209

ABSTRACT

This study aimed to investigate the multiscale structure, physicochemical properties, and in vitro digestibility of black rice starch (BRS) and gallic acid (GA) complexes prepared using varying ultrasound powers. The findings revealed that ultrasonic treatment disrupted BRS granules while enhancing the composite degree with GA. The starch granules enlarged and aggregated into complexes with uneven surfaces. Moreover, the crystallinity of the BRS-GA complexes increased to 22.73 % and formed V6-I-type complexes through non-covalent bonds. The increased short-range ordering of the complexes and nuclear magnetic resonance hydrogen (1H NMR) further indicated that the BRS and GA molecules interacted mainly through non-covalent bonds such as hydrogen bonds. Additionally, ultrasound reduced the viscoelasticity of the complexes while minimizing the mass loss of the complexes at the same temperature. In vitro digestion results demonstrated an increase in resistant starch content up to 37.60 % for the BRS-GA complexes. Therefore, ultrasound contributes to the formation of V-typed complexes of BRS and GA, which proves the feasibility of using ultrasound alone for the preparation of starch and polyphenol complexes while providing a basis for the multiscale structure and digestibility of polyphenol and starch complexes.


Subject(s)
Oryza , Oryza/chemistry , Gallic Acid/chemistry , Digestion , Starch/chemistry , Polyphenols
7.
J Colloid Interface Sci ; 661: 1060-1069, 2024 May.
Article in English | MEDLINE | ID: mdl-38335790

ABSTRACT

Herein, a novel dual-mode probe for organophosphorus pesticides (OPs) colorimetric and photothermal detection was developed based on manganese modified porphyrin metal-organic framework (PCN-224-Mn). PCN-224-Mn had excellent oxidase-like activity and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB) to blue-green oxidation state TMB (oxTMB), which exhibited high temperature under near-infrared irradiation. l-ascorbate-2-phosphate was hydrolyzed by acid phosphatase to produce ascorbic acid, which weakened colorimetric and photothermal signals by impacting oxTMB generation. The presence of OPs blocked the production of ascorbic acid by irreversibly inhibiting the activity of acid phosphatase, causing the restoration of chromogenic reaction and the increase of temperature. Under the optimal conditions, the probe showed a good linear response to OPs in the concentration range of 5 âˆ¼ 10000 ng/mL, using glyphosate as the analog. The detection limits of glyphosate in colorimetric mode and photothermal mode were 1.47 ng/mL and 2.00 ng/mL, respectively. The probe was successfully used for sensitive identification of OPs residues in tea, brown rice, and wheat flour. This work proposes a simple and reliable colorimetric/photothermal platform for OPs identification, which overcomes the problem that single-mode detection probes are susceptible to external factors, and has broad application potential in the field of food safety.


Subject(s)
Benzidines , Metal-Organic Frameworks , Pesticides , Organophosphorus Compounds , Colorimetry , Flour , Triticum , Ascorbic Acid/chemistry , Acid Phosphatase
8.
Int J Biol Macromol ; 259(Pt 1): 129243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199535

ABSTRACT

This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.


Subject(s)
Hordeum , Starch , Starch/chemistry , Succinic Anhydrides/chemistry , Freezing
9.
Int J Biol Macromol ; 258(Pt 1): 128938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143061

ABSTRACT

In this study, type III resistant starch (RS3) was prepared from high amylose maize starch (HAMS) using hydrothermal (RS-H), hydrothermal combined ultrasonication (RS-HU), hydrothermal-alkali (RS-HA), and hydrothermal-alkali combined ultrasonication (RS-HAU). The role of the preparation methods and the mechanism of RS3 formation were analyzed by studying the multiscale structure and digestibility of the starch. The SEM, NMR, and GPC results showed that hydrothermal-alkali combined with ultrasonication could destroy the granule structure and α-1,6 glycosidic bond of HAMS and reduce the molecular weight of HAMS from 195.306 kDa to 157.115 kDa. The other methods had a weaker degree of effect on the structure of HAMS, especially hydrothermal and hydrothermal combined ultrasonication. The multiscale structural results showed that the relative crystallinity, short-range orderliness, and thermal stability of RS-HAU were significantly higher compared with native HAMS. In terms of digestion, RS-HAU had the highest RS content of 69.40 %. In summary, HAMS can generate many short-chain amylose due to structural damage, which rearrange to form digestion-resistant crystals. With correlation analysis, we revealed the relationship between the multiscale structure and the RS content, which can be used to guide the preparation of RS3.


Subject(s)
Amylose , Resistant Starch , Amylose/chemistry , Zea mays/chemistry , Ultrasonics , Digestion , Starch/chemistry
10.
Carbohydr Polym ; 319: 121181, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567717

ABSTRACT

The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.


Subject(s)
Nanoparticles , Pea Proteins , Cellulose/chemistry , Calcium , Calcium Chloride , Water/chemistry , Nanoparticles/chemistry
11.
Int J Biol Macromol ; 244: 125397, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37327927

ABSTRACT

In this study, high amylose maize starch(HAMS)was treated by Hydrothermal-alkali. SEM, SAXS, XRD, FTIR, LC-Raman, 13C CP/MAS NMR, GPC and TGA were used to study the changes in the granules and structure of HAMS. The results show that the granule morphology, lamellar structure, and birefringence of HAMS remained intact at 30 °C and 45 °C. With increasing temperature, the starch granules are fragmented, and the crystallinity, DD, FWHM values, molecular weight, and thermal stability of HAMS decrease. The double helical structure dissociated, and the content of amorphous regions increased, indicating the from order to the disorder of the HAMS structure. A similar annealing behavior occurred in HAMS at 45 °C, with the rearrangement of amylose and amylopectin occurring. At 75 °C and 90 °C, the short-chain starch produced by chain breakage regroups to form an ordered double helix structure. In general, the granule structure level of HAMS was damaged to different degrees at varying temperatures. HAMS showed gelatinization behavior in alkaline solutions when the temperature is 60 °C. This study expects to provide a model for the gelatinization theory of HAMS systems.


Subject(s)
Amylose , Zea mays , Amylose/chemistry , Temperature , Zea mays/chemistry , Scattering, Small Angle , X-Ray Diffraction , Starch/chemistry
12.
J Sci Food Agric ; 103(14): 7030-7039, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37337853

ABSTRACT

BACKGROUND: Active and smart food packaging based on natural polymers and pH-sensitive dyes as indicators has attracted widespread attention. In the present study, an antioxidant and amine-response color indicator film was developed by incorporating bilirubin (BIL) into the κ-carrageenan (Carr) matrix. RESULTS: It was found that the introduction of BIL had no effect on the crystal/chemical structure, water sensitivity and mechanical performance of the Carr-based films. However, the barrier properties to light and the thermal stability were significantly improved after the addition BIL. The Carr/BIL composite films exhibited excellent 1,1-diphenyl-2-picryl-hydrazyl (i.e. DPPH)/2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (i.e. ABTS) free radical scavenging abilities and color responsiveness to different concentrations of ammonia. The application assay reflected that the Carr/BIL0.0075 film was effective in delaying the oxidative deterioration of shrimp during storage and realizing the color response of its freshness through the change of b* value. CONCLUSION: Active and smart packaging films were successfully prepared by incorporating different contents of BIL into the Carr matrix. The present study helps to further encourage the design and development of a multi-functional packaging material. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Bilirubin , Carrageenan , Food Packaging , Amines , Anthocyanins , Hydrogen-Ion Concentration
13.
Carbohydr Polym ; 314: 120940, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37173023

ABSTRACT

This work focused on the pathways by which NCC regulated the digestibility of corn starch. The addition of NCC changed the viscosity of the starch during pasting, improved the rheological properties and short-range order of the starch gel, and finally formed a compact, ordered, and stable gel structure. In this respect, NCC affected the digestion process by changing the properties of the substrate, which reduced the degree and rate of starch digestion. Moreover, NCC induced changes in the intrinsic fluorescence, secondary conformation, and hydrophobicity of α-amylase, which lowered its activity. Molecular simulation analyses suggested that NCC bonded with amino acid residues (Trp 58, Trp 59, and Tyr 62) at the active site entrance via hydrogen bonding and van der Waals forces. In conclusion, NCC decreased CS digestibility by modifying the gelatinization and structural properties of starch and inhibiting α-amylase activity. This study provides new insights into the mechanisms by which NCC regulates starch digestibility, which could be beneficial for the development of functional foods to tackle type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Starch , Starch/chemistry , Cellulose/chemistry , Zea mays/chemistry , Digestion , alpha-Amylases
14.
Food Chem ; 424: 136383, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37207603

ABSTRACT

In this study, chrysin (Chr), baicalein (Bai), apigenin (Api) and galangin (Gal) were selected as the representative flavonoids with different position of phenolic hydroxyl groups, and edible dock protein (EDP) was used as a material to construct delivery system. Subsequently, the molecular interactions and functional properties of flavonoids-loaded EDP nanomicelles were investigated. Results exhibited that hydrogen bond, hydrophobic interaction and van der Waals force were the main driving forces for self-assembly of flavonoids and EDP molecules. Meanwhile, this self-assembly remarkably enhance the storage and digestion stability of flavonoid compounds. Among four flavonoids, the order of loading ability was: Api > Gal > Bai > Chr. Herein, Api had a largest loading capacity (6.74%) because of its active phenolic hydroxyl group in ring B. These results suggested that the position of phenolic hydroxyl groups in flavonoids is a key factor to regulate its self-assembly with protein molecules.


Subject(s)
Flavonoids , Hydroxyl Radical , Flavonoids/chemistry , Phenols
15.
Int J Biol Macromol ; 237: 124187, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990406

ABSTRACT

In this work, Corn Starch (CS)-Lauric acid (LA) complexes prepared by different ultrasound times were explored for multi-scale structure and digestibility. The results showed that the average molecular weight of the CS decreased from 380.478 to 323.989 kDa and the transparency increased to 38.55 % after 30 min of ultrasound treatment. The scanning electron microscope (SEM) results revealed a rough surface and agglomeration of the prepared complexes. The complexing index of the CS-LA complexes increased by 14.03 % compared to the non-ultrasound group. The prepared CS-LA complexes formed a more ordered helical structure and a more dense V-shaped crystal structure through hydrophobic interactions and hydrogen bonding. In addition, fourier transforms infrared spectroscopy and the molecular docking revealed that the hydrogen bonds formed by CS and LA promoted the formation of an ordered structure of the polymer, retarding the diffusion of the enzyme and thus reducing the digestibility of the starch. With correlation analysis, we provided insight into the multi-scale structure-digestibility relationship in the CS-LA complexes, which provided a basis for the relationship between structure and digestibility of lipid-containing starchy foods.


Subject(s)
Starch , Starch/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Hydrogen Bonding , Molecular Weight
16.
Int J Biol Macromol ; 234: 123695, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36801275

ABSTRACT

In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.


Subject(s)
Camellia sinensis , Oryza , Oryza/chemistry , Tea , Cellulose , Starch/chemistry , Thermodynamics , Viscosity
17.
Int J Biol Macromol ; 233: 123641, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36773868

ABSTRACT

Debranched starch (DBS) has great probability as carrier for bioactive ingredients, but effects of branching degree (DB) on the complex formation of starch remain unclear. This study investigated the potential of DBS with different DB to load lycopene and characterized the structural properties of inclusion complexes. Glutinous rice starch was debranched to get DBS with different molecular weights, where DBS with a branching degree of 11.42 % had the greatest encapsulation efficiency (64.81 %). SEM, particle size, and zeta-potential results showed that the complexes form stable spherical crystals through electrostatic interactions. The structures of complexes were resolved by FTIR, XRD, TGA, and 13C CP/MAS NMR analytical techniques, indicating that lycopene can be loaded on DBS by the self-assembly through hydrophobic and hydrogen bonding interactions. Degradation experiments revealed that retention of complexes was significantly higher than the unencapsulated one. Our study reveals the structural features of the complex between DBS and lycopene, providing theoretical guidance for developing and producing novel nutraceuticals.


Subject(s)
Starch , Lycopene , Magnetic Resonance Spectroscopy , Starch/chemistry
18.
Int J Biol Macromol ; 224: 1313-1321, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36306903

ABSTRACT

High amylose corn starch (HACS)-oat ß-glucan (OBG) complex was prepared by ball milling treatment. The morphology and structure of the samples were characterized, and the digestibility of the samples was studied. SEM analysis showed that the grain structure of oat ß-glucan-starch after ball milling showed an irregular aggregate shape. The rheological results indicated that the apparent viscosity of the solution of HACS-OBG complex prepared by ball milling, with the values of both G' and G″ decreasing on the increase of OBG addition. Multi-scale structure analysis showed that the disorder of the crystal structure and short-range structure of the HACS-OBG complex would lead to the decrease of the double helix structure content. In terms of digestibility, the RDS of the complex decreased from 75.88 % to 66.26 %, which suppressed the digestibility of starch. Molecular docking and quantum chemistry techniques further demonstrated the strong hydrogen bond interaction between HACS and OBG and the inhibition rate of OBG on the enzyme, which was conducive to the slow digestion of HACS-OBG complex. Therefore, ball milling treatment can promote the binding of OBG to starch, which may be an effective method for postprandial blood glucose control.


Subject(s)
Starch , beta-Glucans , Starch/chemistry , Molecular Docking Simulation , beta-Glucans/chemistry , Amylose , Viscosity
19.
Gels ; 8(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36354621

ABSTRACT

An investigation was conducted into the impacts of hydroxypropyl glutinous rice starch (HPGRS) and lactate-esterified glutinous rice starch (LAEGRS) on a dilute solution and gel properties of wheat starch (WS) at different proportions (0%, 1%, 3%, 5%, and 10%). The results of dilute solution viscosity showed that hydroxypropyl treatment of glutinous rice starch (GRS) could promote the extension of GRS chains, while lactate esterification led to the hydrophobic association of GRS chains, and the starch chains curled inward. Different HPGRS: WS and LAEGRS: WS ratios, ß > 0 and ∆b > 0, showed HPGRS and LAEGRS produced attractive forces with WS and formed a uniform gel structure. Compared with WS gel, HPGRS, and LAEGRS could effectively delay the short-term aging of WS gels, and LAEGRS had a more significant effect. HPGRS increased the pasting viscosity, viscoelasticity, and springiness of WS gels, reduced the free water content, and established a tighter gel network structure, while LAEGRS had an opposite trend on WS. In conclusion, HPGRS was suitable for WS-based foods with stable gel network structure and high water retention requirements, and LAEGRS was suitable for WS-based foods with low viscosity and loose gel structure.

20.
Foods ; 11(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36076775

ABSTRACT

Betulinic acid (BA) has anti-inflammatory, antioxidative stress, and antitumor activities, but BA bioavailability is low due to its poor water solubility and short half-life. This study aimed to construct a BA delivery system to improve its utilization in vitro. Glycosylated zein (G-zein) was prepared using the wet heating method, and BA-loaded zein composite nanoparticles were prepared using the antisolvent method. Compared to zein, G-zein had the advantages of higher solubility and lower surface hydrophobicity. The encapsulation efficiency of G-zein@BA reached over 80% when the BA concentration was 1 mg/mL. Compared to zein@BA nanoparticles, G-zein@BA was characterized by smaller droplets, higher encapsulation efficiency, and a more stable morphology. The sustained release and solubility of G-zein@BA nanoparticles were also superior to those of zein@BA. Compared with free BA, the dispersions of zein@BA and G-zein@BA nanoparticles in water increased 2.27- and 2.91-fold, respectively. In addition, zein@BA and G-zein@BA nanoparticles markedly inhibited the proliferation of HepG2 cells. This study provides new insights into the structural properties and antitumor activity of BA composite nanoparticles to aid in the development of zein particles as functional materials to deliver bioactive compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...